
Available online at www.sciencedirect.com
Journal of Computational Physics 227 (2008) 2130–2153

www.elsevier.com/locate/jcp
Time behaviour of the error when simulating finite-band
periodic waves. The case of the KdV equation

A. Durán
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Abstract

This paper is devoted to study the error growth of numerical time integrators for N-phase or N-band quasi-periodic (in
time) solutions of the periodic Korteweg–de Vries equation. It is shown that the preservation, through numerical time inte-
gration, of conserved quantities of the periodic problem of the equation, may be an element to take into account in the
selection of the numerical method. We explain why the inclusion of these properties of conservation provides a better error
propagation. In particular, we emphasize how the preservation of invariants makes influence in the simulation of some
physical parameters of the waves.
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1. Introduction

This work may be considered as a contribution to extend the advantages of the so-called geometric integra-
tors in the numerical approximation of some partial differential equations. These methods are designed taking
into account geometric properties of the differential equations being integrated. Many references about the
benefits of their use in ordinary differential equations can be cited ([53,27,52] and references therein). The
use of geometric integrators in partial differential equations, although experimentally suitable in some cases,
does not seem to be justified theoretically in a similar level to the case of ordinary differential equations. Some
works in this sense are [1,4,32] and references therein.

This paper is interested in the behaviour in time of simulations of the solution of the periodic problem of
the Korteweg–de Vries (KdV) equation with finite-band potentials as initial conditions. Its main conclusion is
that the preservation, or approximate preservation up to certain order of the step size, of invariant quantities
of the problem through the numerical time integration, is a property suitable for a numerical method, in the
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sense that it provides a better error propagation in time than in the nonconservative case. The structure in time
of the error is analyzed, leading to the identification of some sources of harmful propagation. A consequence
of this analysis involves the simulation of some parameters of the wave. It is shown that a good behaviour of
the method with respect to the first N + 1 invariants of the problem gives a more correct simulation of the
parameters that describe an N-band periodic solution.

The paper is structured as follows. Section 2 is devoted to explain some background material on the prob-
lem considered. This includes the introduction to the periodic Korteweg–de Vries equation, with its Hamilto-
nian structure and the generation of infinite conserved quantities. This Section also gives an overview about
finite-band solutions of the KdV equation; some of them can be characterized in terms of the invariants of the
problem. We also make a description of the parameters that define these solutions. Then we divide the study of
the corresponding numerical approximation into two sections. In Section 3 we treat the case of one-band solu-
tions, the well-known cnoidal waves. Some reasons to separate this case from the general one can be given:

� The explicit expression of the solutions allows to illustrate the results about the time behaviour of the errors
and to study numerically the behaviour of the parameters in a more detailed way.
� The one-phase case may serve to treat the general case, in the sense that, due to the structure of an N-phase

solution (with N > 1), the study done for the cnoidal waves may help to obtain some conclusions about the
propagation of the error in the multi-phase case.
� The analysis of the error can be given in a different and simpler manner in the one-phase case. This is due to

the fact that the cnoidal waves are relative equilibria of the problem. The spectral analysis of the linearized
problems around the cnoidal waves, that we need to state in order to investigate the structure of the error,
can be done by using some properties that are not available, at least apparently, in the general case. The
main one is the possibility of transforming the linearized equation around a one-phase solution into a con-
stant in time coefficients equation.

Section 3 shows the main results about the time behaviour of the numerical methods when approximating
cnoidal waves. It includes the application of the spectral analysis of the linearization of the KdV equation
around a cnoidal wave to the numerical solutions, via asymptotic expansions of the error. This section ends
with a subsection of numerical experiments. This consists of the illustration of the previous theoretical results
and a study about the influence of the conservation properties in the simulation of the parameters of the wave.
Finally, Section 4 treats the case of general N-band solutions, with N > 1. From some intuitive ideas about the
influence of the study of Section 3 in this general case, we then analyze the linearization around the N-band
solution from a different point of view. Here we use the description of the solutions of the corresponding lin-
earized KdV equation around a N-band potential, given by the squared Bloch eigenfunctions of the associated
Hill’s problem. This will allow to identify some harmful sources of the error and their relations with the
parameters that characterizes the solution.

The analysis is performed for semi-discrete in time numerical methods. Other studies for fully discrete
schemes can also be done [9] and may be the subject of future extensions.

2. The periodic KdV equation and finite-band solutions

We are concerned with the Korteweg–de Vries equation [33]
ut þ 2uux þ uxxx ¼ 0; �1 < x <1; t > 0; ð1Þ
with periodic boundary conditions, of period say L,
uðxþ L; tÞ ¼ uðx; tÞ: ð2Þ

Here, u = u(x, t) is real-valued. It would be very difficult to mention even a small part of the studies involving
(1) or (1) and (2) and its importance in many scientific disciplines. We may cite [23,37–39,45,47,54,58] as a
modest representation. It is also of interest for us to emphasize some properties of (1) and (2) that will be used
later (they are susceptible of being ordered in several ways). The first one is the integrable character of (1) and
(2). The method of inverse scattering ([23,37,59,2,3,46,48] between others), originally developed for the initial
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value problem of the KdV equation, can also be adapted to the periodic case [35,47]. Some consequences of
this fact deserve some comments. The first one is the existence of an infinite number of functionals that are
preserved in time by the solutions of (1) and (2). As in the case of the initial value problem, they can be given
hierarchically by using a Lenard recursion
JdH nþ1ðuÞ ¼ KdHnðuÞ; n ¼ 1; 2; . . . ; ð3Þ
(d denotes variational derivative) where J ;K are the operators
J ¼ @x; K ¼ �@xxx � u@x � @xu:
The first three invariants are
H 0ðuÞ ¼
Z L

0

udx; ð4Þ

H 1ðuÞ ¼
1

2

Z L

0

u2 dx; ð5Þ

H 2ðuÞ ¼
Z L

0

1

2
u2

x �
1

3
u3

� �
dx: ð6Þ
The second quantity H1(u) is associated to the symmetry group of (1) of translations in space, with JdH 1ðuÞ as
the infinitesimal generator of the group [49]. On the other hand, the group of translations in time is the flow of
the Hamiltonian vector field JdH 2ðuÞ associated to (6). This gives the Hamiltonian form of Eq. (1)
ut ¼ JdH 2ðuÞ: ð7Þ

In order to adapt the conditions (2) to the Hamiltonian structure, we will consider (7) defined in the phase
space H 1

per of periodic, H1 functions with period L, with the usual norm
jjujj21 ¼
Z L

0

u2 dxþ
Z L

0

u2
x dx:
The first invariant (4) is called a Casimir [38,40,49]. It is not related to any transformation group and it is a
consequence of the degenerate character of the operator J, whose kernel is spanned by the gradient dH0(u).
Here we also introduce the subspace of H 1

per where the operator J is invertible,
H 1
per;0 ¼ fu 2 H 1

per=H 0ðuÞ ¼ 0g;
that we will need later. It consists of L-periodic, H1 functions with zero mean value. The rest of the invariants
in the hierarchy (3) does not correspond to any geometric symmetry of (1), although some symmetries asso-
ciated to the quantities can be defined in a generalized sense [49].

The inverse scattering method may also allow to construct special solutions of (1) and (2), from finite-band
potentials [3,14,42,51]. The resulting solutions are conditionally periodic or quasi-periodic, that is functions of
a finite number of phase variables hi = jix � xit, periodic in each hi but with, in general, noncommesurable
wave numbers ji. They can be expressed in terms of hyperelliptic functions or by using the Theta function
representation [3]. Here we will consider those waves that are periodic, that is, corresponding to commensu-
rable wave numbers. Following Lax [38,39], for instance, the time evolution of these waves is quasi-periodic.

We make a brief description of these solutions. More details and a much better explanation can be seen in
many places [3,11,46,51]. One may start from the Hill’s equation (also called Schrödinger equation) [41]
�y00 þ qðxÞy ¼ ky; qðxþ LÞ ¼ qðxÞ: ð8Þ

In quantum mechanics, q plays the role of the potential of the system. The spectrum of (8) can be determined
by using Floquet theory. It consists of a sequence of intervals (finite or infinite), the allowed energy or stable
bands. The length of the separating gaps between the intervals (the forbidden energy bands) tends to zero
when k ?1. There are two linearly independent Bloch eigenfunctions. The main spectrum is composed of
those eigenvalues ki = Ei for which at least one of the eigenfunctions is L-periodic or 2L-periodic. We may
assume that the stable bands are the intervals [E2i�1,E2i] while the gaps are [E2i,E2i+1]. For our purposes it
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is also necessary to consider the auxiliary spectrum, which is the spectrum of the Dirichlet problem given by
(8) plus the conditions y(x0) = 0, y(x0 + T) = 0, for an arbitrary x0 2 [0,T]. This spectrum is discrete, with the
eigenvalues ci = ci(x0) in the unstable bands, and only one ci in each [E2i,E2i+1].

Special role in our context is played by the so-called finite-band or finite-gap potentials They are poten-
tials qN for which the number of intervals is finite (typically a finite number of bounded intervals and one of
infinite length). Then, for an N-band potential with N P 1, the main spectrum contains a finite number of
simple eigenvalues Ei, i = 1, . . . , 2N + 1. The corresponding eigenfunction is L-periodic or 2L-periodic (anti-
periodic). The main spectrum also contains an infinite number of double eigenvalues with a two-dimensional
eigenspace.

The direct scattering transform consists of the determination of the main spectrum Ej, j = 1, . . . , 2N + 1,
from the initial data qN, by solving the corresponding eigenvalue problem (8). The inverse scattering transform
is based on the construction of the functions cj at any point x and the reconstruction of the potential u from
the known set of band edges Ej, j = 1, . . . , 2N + 1, via the trace formula [3,11]
qN ¼
X2Nþ1

j¼1

Ej � 2
XN

j¼1

cj; ð9Þ
and the evolution in space given by the system
dcj

dx
¼

2irj

ffiffiffiffiffiffiffiffiffiffiffi
RðcjÞ

q
QN

k¼1;k 6¼jðci � ckÞ
; rj ¼ �1; j ¼ 1; . . . ;N ;

cðx0Þ ¼ c0
j ; j ¼ 1; . . . ;N ;

ð10Þ
where
RðEÞ ¼
X2Nþ1

i¼1

ðE � EiÞ:
On the other hand, the Ei do not depend on x. In the context of the resolution of (1) and (2), the previous steps
must be completed with the time dependence stage. This shows [3,48] that the Ei are independent of time, while
the evolution of the ci follows a system of the form:
dcj

dt
¼ F ðc1; . . . ; cN ;E1; . . . ;E2Nþ1Þ

ffiffiffiffiffiffiffiffiffiffiffi
RðcjÞ

q
;

cjðx; 0Þ ¼ cjðxÞ; r0j ¼ �1; j ¼ 1; . . . ;N ;
ð11Þ
for some function F. Thus, from an N-band potential (N P 1), u(x, 0) = qN(x), we may reconstruct the solu-
tion of (1) and (2): first one determines the band edges Ei, i = 1, . . . , 2N + 1, the part of the auxiliary spectrum
c0

i ; i ¼ 1; . . . ;N in the unstable bands [E2i,E2i+1] at one point, say x0 = 0, and the signs rj specified there. Then
one solves (10) for ci(x) = ci(x, 0). These form the initial conditions for (11) to get the evolution of ci(x, t), t P 0
and, consequently, the solution u(x, t) of (1) and (2) via (9) for each t. See e.g. [39] for a description in terms of
the Lax pairs.

The solution (9) can also be written in terms of the so-called Riemann theta function [3,14,11]
uN ¼ �
o

2

ox2
ln Hðg1; . . . ; gN Þ þ C; ð12Þ
with C constant, H the Riemann theta function and
gj ¼ jjx� xjt þ /j; j ¼ 1; . . . ;N ; ð13Þ
where jj are the wave numbers, xj the frequencies and /j the constant phases. This representation can be ob-
tained from the previous one by using Abelian transformations and Riemann surfaces [14]. The particular case
N = 1 gives the well-known cnoidal wave solution
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u1 ¼ b2 þ ðb3 � b2Þcn2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb3 � b1Þ

6

r
ðx� ct � x0Þ;m

 !
: ð14Þ
Here, b3 > b2 > b1 are constants and cn(u,m) is the Jacobian elliptic cosine of modulus m. The period of the
wave is
L ¼ 4
ffiffiffi
6
p

KðmÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b3 � b1

p ;
where K(m) is the complete elliptic integral of the first kind and m is the modulus
m ¼ b3 � b2

b3 � b1
with 0 < m < 1. The wave number and the frequency of u are j = 2p/L, x = jc. Some other relevant param-
eters are: the speed c :¼ b3�b2

3
ð2b1 � b2 þ 2b3Þ; the amplitude A := b3 � b2; the initial phase x0; the maximum

(b3) and the minimum (b2). In this form, cnoidal wave profiles are determined by the three parameters b1, b2,
b3. They can also be represented in terms of the band edges E1, E2, E3.

An alternative way to introduce the finite-band periodic solutions involves the invariants of (1) and (2)
given by the recursion (3) [38,39]. Let us first consider the case of cnoidal waves. They are constrained minima
of the Hamiltonian H2 on level sets of the invariants H1, for a given mean value. For a fixed level set
{H1(u) = c}, a cnoidal wave profile u0 satisfies
JðdH 2ðu0Þ þ kdH 1ðu0ÞÞ ¼ 0;

H 1ðu0Þ ¼ c:
ð15Þ
That is, u0 2 H 1
per is a stationary point of H2 restricted to the level set, or relative equilibrium. We must give

some remarks.

(i) The symmetry group of translations in space determines the cnoidal wave solutions of (1) and (2), since:

� Any translation u(x � x0) of a solution u of (15) is also a solution of (15).
� The time evolution of the cnoidal wave solution, from a profile u0 given by (15) can be obtained by

applying the symmetry group of translations determined by the Lagrange multiplier k [38], that is

uðx; tÞ ¼ u0ðx� kt � x0Þ: ð16Þ
Thus, k plays the role of the speed of the wave.
(ii) Within this framework, the mean value of the cnoidal solution plays a relevant role. Note that (15) can
be written as
dH 2ðu0Þ þ kdH 1ðu0Þ ¼ �adH 0ðu0Þ;
u000 þ u2

0 � ku0 ¼ a;
ð17Þ

for some constant a. By integrating in a period, we have

aðc; lÞ ¼ 1

L
ð2c� kðc; lÞlÞ; l ¼

Z L

0

u0 dx:

Also, the existence of a smooth family (c,l) ´ u0(c,l) of solutions of (17) for c > 0; l 2 R can be proved
[38]. Theoretical studies about cnoidal waves (specially studies about stability, persistence, etc.) usually
consider only the case of zero mean value, by using the Galilean invariance of the KdV. However, in our
case mean value plays some role in the analysis and we are forced to consider it as a general parameter,
since it has some relevant influence in the behaviour of the numerical approximations. Due to the depen-
dence on c and l, we will denote the solution u in (16) as u(x, t,c,l,x0).
It may be worth noting that, under certain conditions [38,34,40], a general N-phase profile also satisfies a
problem like (17) but with the first N + 1 invariants of (1) and (2)
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dðH Nþ1ðuÞ þ
XN

j¼0

kjHNþ1�jðuÞÞ ¼ 0;

H jðuÞ ¼ lj; j ¼ 0; . . . ;N

ð18Þ

for some kj, and it minimizes HN+1(u) subject to the constraints (18). This gives an alternative charac-
terization of N-band potentials. However, this formalism is not convenient for our purposes in the gen-
eral case and we will only make use of it when N = 1.
3. The case of one-band solutions

Here we analyze the time behaviour of approximations to a cnoidal wave of the family (16). To this end, we
consider semi-discrete (with discrete t and continuous x) one-step integrators for (1) of the form
Unþ1 ¼ UDtðU nÞ; n ¼ 0; 1; . . . ; ; ð19Þ

where Dt denotes the time step, Un = Un(x) is a numerical solution at time level tn = nDt, n = 0,1,. . . and UDt

approximates the Dt-flow /Dt of Eq. (1), written as an evolution equation in the corresponding phase space,
described in (7). We first assume that, for all n, Un(x) is L-periodic, This has to be taken into account when, for
practical purposes, the problem is discretized in space. Thus, if U0 = u0(x � x0) with u0 a solution of (15), then
the corresponding Un(x) approximates the solution u = u(x, t,c,l,x0) of the form (16).

Our purpose here is to investigate the structure of the propagation of the errors Un(x) � u(x, tn) for fixed x.
The study of time behaviour of global error in the numerical approximation of ordinary differential equations
may follow essentially two techniques. The first one considers asymptotic expansions of the global error
[30,31,55,28,25]. The second one is the use of Backward Error Analysis. In the case of ordinary differential
equations, this approach is based on the hypothesis of considering the numerical solution as the exact solution,
at discrete times, of a modified differential equation. For a description of this theory, see e.g. [27,52] and many
references therein (see also [26] for a comparison between the two techniques). For partial differential equa-
tions, however, this theory seems to be less expanded, see e.g. [18,44] for some special cases. In the present
paper, asymptotic expansion of global error will be used.

Assuming the convergence of (19) for sufficiently small stepsizes Dt in the phase space H 1
per, we make some

additional hypotheses.

(H1) The local error at u admits an expansion of the form
UDtðuÞ � uDtðuÞ ¼ Dtrþ1lrþ1ðuÞ þ Dtrþ2lrþ2ðuÞ þ � � � :

Here, r P 1 is the order of the method. We assume that the functions lr+j(u), j = 1,2, . . ., are smooth, indepen-
dent of Dt and admit the group of translations in space as a symmetry group [16]. Last hypothesis can be ob-
tained if the mapping UDt is invariant by this group, and is satisfied by most standard integrators, since the
group is linear [56]. Note also that, since lr+j(u) is a function of u and derivatives, then it is L-periodic. Finally,
the existence of the local error expansion can be obtained as a consequence of smoothness and consistency of
the method [28].
(H2) The global error at u admits an asymptotic expansion of the form
UnðxÞ � uðx; tn; c; l; x0Þ ¼
Xr�1

j¼0

Dtrþjerþjðx; tnÞ þ Dt2r�1zðx; tn;DtÞ; ð20Þ
where

� z(�, t,Dt) is a smooth mapping such that for fixed t, kz(�, t,Dt)k1 ? 0 as Dt ? 0
� er+j(x, t) are smooth error functions independent of Dt.
The existence of (20) is not restrictive. It can be deduced in some standard case, e. g. from the convergence
and the hypothesis that the method admits an expansion of the form
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UDtðuÞ ¼ uþ Dtf ðuÞ þ Dt2d2ðuÞ þ Dt3d3ðuÞ þ � � � ;

where f ðuÞ ¼ JdH 2ðuÞ and the functions dj(u) are analytic. The coefficient of Dt is f(u) for consistent methods.

In (20), the remainder z(�, t,Dt), although goes to zero with the time step, does not have a uniform time
behaviour. Therefore, this term reduces the time for which the propagation of the global error is explained
by the error functions. However, since the expansion is up to order O(Dt2r), this guarantees the dominance
of the error terms er+j, with Dt sufficiently small, for long times, see [10].

Note that since we assume that Un(x) is L-periodic, from the equality
U nðxþ LÞ � uðxþ L; tn; c; l; x0Þ ¼ U nðxÞ � uðx; tn; c; l; x0Þ;

using (20), differentiating with respect to Dt and taking Dt ? 0, we have
erþjðxþ L; tnÞ ¼ erþjðx; tnÞ; j ¼ 0; . . . ; r � 1;
and hence
zðxþ L; tn;DtÞ ¼ zðx; tn;DtÞ:

This implies that the error functions er+j, j = 0, . . . , r � 1 and the remainder z are periodic in space with period
L. As well, the error functions er+j,0 6 j 6 r � 1, satisfy nonhomogeneous versions of the linearized problem
around u of the form [30,55,28]
@terþj ¼ JH 002ðuÞerþj þ rjðuÞ;
erþjðx; 0Þ ¼ 0:

ð21Þ
In (21), H 002ðuÞ denotes the Hessian of the Hamiltonian at the cnoidal solution. It can be seen that for
0 6 j 6 r � 1, the source term, rj(u(x, t)) in (21), only depends on JdH 2ðuÞ, the terms of the local error at u

and their derivatives. This implies that rj(u(�, t)) is L-periodic. However, these sources are hard to obtain.
The simplest case, corresponding to j = 0, gives r0 = � lr+1 and the problem for the leading term of the global
error expansion
@ter ¼ JH 002ðuÞer � lrþ1ðuÞ;
erðx; 0Þ ¼ 0:
The analysis of the global error requires then to study the problems (21). Note that with the change of
variables
X ¼ x� kt � x0; T ¼ t;
the function ErþjðX ; T Þ ¼ erþjðx; tÞ satisfies (0 6 j 6 r � 1)
@T Erþj ¼ JH 00ðu0ðX ÞÞErþj þ rjðu0ðX ÞÞ;
ErþjðX ; 0Þ ¼ 0

ð22Þ
where H(u) = H2(u) + kH1(u). Therefore, the reference moving with the wave transforms the problems (21)
into problems (22) with time independent coefficients. This makes the analysis of the error easier to be treated,
but observe that this cannot be done in the general case of N-phase solutions, N > 1.

3.1. Analysis of linearized equations

We now search for the structure of the error functions er+j by analyzing the form of the solutions of (22).
Since the steps of the study described below are common to all the equations (22), we try to investigate the
form of the solution of a problem of the general type
@T E ¼ JH 00ðu0ðX ÞÞEþ rðu0ðX ÞÞ;
EðX ; 0Þ ¼ 0

ð23Þ
with H(u) = H2(u) + kH1(u). Then, the results about (23) will be applied to each error function.
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We need to study some spectral properties of the operator
L ¼ JH 00ðu0Þ; H 00ðu0Þ ¼ �oXX � 2u0ðX Þ þ k: ð24Þ

These are shown and explained in the following results. Hereafter, it will be understood that the derivatives are
evaluated at the corresponding values of c, l, x0 of u.

Theorem 1. We consider the operator (24) defined in H1
per. Then

(i) Zero is an eigenvalue of L with
V 1 ¼ Kerg L \ H 1
per;0 ¼ KerL2 \ H 1

per;0 ¼ span oX u0;
du0

dc

� �
:

Similarly, if L� denotes the adjoint of L, then

Kerg L� \ H 1
per;0 ¼ KerðL�Þ2 \ H 1

per;0 ¼ spanðvðX Þ;AðX ÞÞ

with

vðX Þ ¼ u0ðX Þ �
l
L

1; ð25Þ

AðX Þ ¼ P ðX Þ � hP ; 1i
L

1; P ðX Þ ¼
Z L

0

du0

dc
dy; ð26Þ

where 1 denotes the function that equals 1 for all X and h � , � i denotes the usual inner product in L2[0,L].

(ii) Furthermore, if
V 2 ¼ ðKerg L \ H 1
per;0Þ

? \ H 1
per;0;

where the orthogonality is considered with respect to the usual inner product in L2[0, L] then

H 1
per ¼ V 1 � V 2 � spanð1Þ: ð27Þ
Proof. This is done in several steps, where we will use some known results [5,12,13]. They are:

1. The operator H00(u0) is self-adjoint in H 1
per with
Ker H 00ðu0Þ ¼ spanðoX ðu0ÞÞ: ð28Þ

2. We have the following properties:
ok
oc
< 0; ð29Þ

H 00ðu0Þ1 ¼ 2u0 � k1; ð30Þ

H 00ðu0Þ
du0

dc
¼ ok

oc
u0 þ

oa
oc

1: ð31Þ

Note first that if u 2 H 1
per, we can decompose
u ¼ u� H 0ðuÞ
L

1þ H 0ðuÞ
L

1

with u1 ¼ u� H0ðuÞ
L 1 2 H 1

per;0. Since any function in H 1
per;0 is, by definition, orthogonal to the function 1,

then we have

H 1
per ¼ H 1

per;0 � spanð1Þ; ð32Þ

that will be used elsewhere.
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First step of the proof is enclosed in the following:

Lemma 2

Under the conditions of Theorem 1,
KerL \ H 1
per;0 ¼ spanðoX u0Þ;

KerL� \ H 1
per;0 ¼ spanðvðX ÞÞ;
with v given by (25).

Proof of Lemma 2. We will prove first equality, since the second one follows a similar argument. Take
u 2 H 1

per;0 with Lu ¼ 0. Then H00(u0)u = C is constant. If C = 0, then u 2 Ker H00(u0) and, following (28),
u 2 span(oXu0). Suppose that C 6¼ 0. Without loss of generality we may assume C = 1. Then H00(u0)u = 1.
Since u0 is L-periodic, using (28) and the self-adjoint character of H00(u0), we have that the function 1 is orthog-
onal to the kernel of H00(u0), and therefore there is g 2 H 1

per with Lg ¼ 1. Suppose now that g 2 H 1
per;0, that is

hg,1i = 0. Then, using self-adjointness and (30),
hH 00ðu0Þg; 1i ¼ hg;H 00ðu0Þ1i ¼ 2hg; u0i � khg; 1i ¼ 2hg; u0i:

And also
hH 00ðu0Þg; 1i ¼ h1; 1i ¼ L:
Therefore hg, u0i = L/2. On the other hand, since du0

dc 2 H 1
per;0, we have hH 00ðu0Þg; du0

dc i ¼ h1;
du0

dc i ¼ 0. But also,
using (31),
hH 00ðu0Þg;
du0

dc
i ¼ hg;H 00ðu0Þ

du0

dc
i ¼ ok

oc
hg; u0i þ

oa
oc
hg; 1i ¼ ok

oc
hg; u0i:
Then (29) implies hg, u0i = 0, which is a contradiction. Thus g cannot be in H 1
per;0 and the problem H00(u0)u = 1

does not have any solution in this space. This proves the first part of Lemma 2. h

We now prove first part of (i) in Theorem 1, since the second part about the adjoint can be proved in a similar
way. Note that, according to (31),
L
du0

dc
¼ ok

oc
oX u0:
Then du0

dc 2 KerL2 \ H 1
per;0. On the other hand, if u 2 KerL2 \ H 1

per;0, then Lu 2 KerL. But
hLu; 1i ¼ hu; L�1i ¼ 0:
Therefore Lu 2 KerL \ H 1
per;0. By applying Lemma 2, we have Lu ¼ a1oX u0, for some constant a1; that is
H 00ðu0Þu ¼ a1u0 þ a21; ð33Þ

for some other constant a2. By using the identities (30) and (31), we can write the functions u0 and 1 in terms of
H 00ðu0Þ du0

dc and H00(u0)1 (see the remark at the end of the proof of Theorem 1). Translating this to (33), we can
obtain some constants b1,b2 such that u� b1

du0

dc � b21 2 Ker H 00ðu0Þ; hence
u ¼ b1

du0

dc
þ b21þ b3oX u0;
for some other constant b3. Since u 2 H 1
per;0, we have b2 = 0 and therefore u 2 spanðoX u0;

du0

dc Þ. To complete the
proof of the first part of (i) in Theorem 1, we have to see that the generalized kernel of L in H 1

per;0 coincides with
KerL2. Take u 2 KerL3 \ H 1

per;0. Then, as before, L2u 2 KerL and therefore it is of the form
Lu ¼ b1

du0

dc
þ b2oX u0;
for some constants b1,b2. Taking the inner product with the function v given by (25) we have, on the one hand
hLu; vi ¼ hu; L�vi ¼ 0;
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by using Lemma 2. On the other hand
hLu; vi ¼ b1

du0

dc
þ b2oX u0; v

� �
¼ b1

du0

dc
; u0

� �
:

And taking into account that
du0

dc
; u0

� �
¼ d

dc
H 1ðu0Þ ¼ 1;
we have b1 = 0 and Lu ¼ b2oX u0 2 KerL \ H 1
per;0. This implies u 2 KerL2 \ H 1

per;0 and completes the
proof. h

Now we attack part (ii) of Theorem 1. We have that (27) is a consequence of (32) and the following

Lemma 3. With the notation of Theorem 1,
H 1
per;0 ¼ V 1 � V 2:
Proof of Lemma 3. It is not hard to see that V1 \ V2 = {0}. Note also that, after some computations, if w 2 V1

then
w ¼ a1oX u0 þ a2

du0

dc
with
a1 ¼ �hw;Ai; a2 ¼ hw; vi;

where v and A are given by (25) and (26), respectively and where we have used the property, proved before,
that du0

dc ; u0

D E
¼ 1 (see proof of Theorem 1). Therefore any u 2 H 1

per;0 can be written as u = u1 + u2 with
u1 ¼ �hu;AioX u0 þ hu; vi
du0

dc
2 V 1;
while u2 = u � u1 satisfies u2 2 H 1
per;0 and
hu2; vi ¼ hu2;Ai ¼ 0: �
Remarks

(1) The function du0

dl 2 H 1
per satisfies
H 00ðu0Þ
du0

dl
¼ ok

ol
v� 1

L
1 ð34Þ

with w ¼ du0

dl � 1
L 2 H 1

per;0. We can write (30) and (31) in the form

H 00ðu0Þ
du0

dc
¼ ok

oc
vþ 2

L
1; ð35Þ

H 00ðu0Þ1 ¼ 2vþ 2l
L
� k

� �
1: ð36Þ

Note finally that (34) implies that w 2 KerL2 \ H 1
per;0, so it is a combination of du0

dc and oXu0. Further-
more, it can be seen that two of the three Eqs. (34)–(36) are independent. These two results allow to write
u0 and 1 in terms of H 00ðu0Þ du0

dc and H00(u0)1 in the proof of Theorem 1.

(2) The bases
oX u0;
du0

dc

� �
; fAðX Þ; vðX Þg;
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of V1 and W ¼ Kerg L� \ H 1
per;0, respectively, are biorthogonal, since

hoX u0; vi ¼
du0

dc
;A

� �
¼ 0;

hoX u0;Ai ¼ �
du0

dc
; u0

� �
¼ � d

dc
H 1ðu0Þ ¼ �1;

du0

dc
; v

� �
¼ du0

dc
; u0

� �
¼ d

dc
H 1ðu0Þ ¼ 1:
We also remind that
L
du0

dc
¼ � ok

oc
oX u0; L�A ¼ � ok

oc
v� 2

L
1:
We now apply these spectral results to the study of the structure of the solution of (23). According to Theorem
1, we decompose the source term r = r1 + r2 + r3 with
r1 ¼ a1oX u0 þ a2

du0

dc
; a1 ¼ �hr;Ai; a2 ¼ hr; vi;

r2 2 V 2; r3 ¼
hr; 1i

L
1:
Then the solution of (23) can be written as E ¼ E1 þ E2 þ E3 with Ej the solution of
@T E ¼ JH 00ðu0ðX ÞÞEþ rjðu0ðX ÞÞ;
EðX ; 0Þ ¼ 0;

ð37Þ
We analyze the form of each component Ej; j ¼ 1; 2; 3. As far as E1 is concerned, we can apply spectral prop-
erties considered above and write
E1ðT Þ ¼ a1ToX u0 þ a2 T
du0

dc
� T 2

2

ok
oc

oX u0

� �
: ð38Þ
The form of E3 is not hard to obtain either;
E3ðT Þ ¼
hr; 1i

L
T � T 2

2
oX u0

� �
: ð39Þ
Finally, the analysis of E2 requires first to study the solutions of the homogeneous version
oT E ¼ LE; ð40Þ

with initial condition Eð0Þ in V2. Observe that the functional
QðuÞ ¼ hH 00ðu0Þu;ui; ð41Þ

is preserved by the solutions of (40), since this is a Hamiltonian system with 1

2
QðuÞ as Hamiltonian. The idea

here is to show that Q defines a norm in V2 equivalent to the usual norm in H 1
per. As a consequence, we will see

that the solutions of (40) with initial condition in V2 are bounded in time.

Theorem 4. If Q is the functional given by (41), then
a ¼ inf
u2V 2;kuk0¼1

QðuÞ > 0;
where k � k0 denotes the usual L2[0,L] norm.

Proof. Note first that, since we assume that u0 is not an equilibrium of the Hamiltonian system, then k 6¼ 0.
We also may assume that k > 0, since if k < 0, we can always change the sign of the relative equilibrium prob-
lem and consider �k instead of k, and the arguments would be similar, with the appropriate change of sign in
H(u0). In physical terms, we are always considering a propagation to the right.
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Some results in [12] implies
inf hu;1i¼hu;vi¼0;jjujj0¼1QðuÞP 0:
Therefore a P 0. Let us assume that a = 0 and then we will come to contradiction (see [57]). If a = 0 then we
have a sequence {un},un 2 V2, kunk0 = 1 such that Q(un);0. The explicit expression of Q(u) is
QðuÞ ¼
Z L

0

ðku2 � 2u0u
2 þ ðoX uÞ2ÞdX :
Note first that since kunk0 = 1, we have
Z L

0

ðu2
n þ ðoX unÞ

2ÞdX P 1:
On the other hand, since Q(un);0, for 0 < � < 1 there is n0 such that for n P n0,
Z L

0

ðu2
n þ ðoX unÞ

2ÞdX 6
C
k

Z L

0

2u0u
2
n dX þ �;
for a constant C > max(k,1) and therefore
1 6

Z L

0

ðu2
n þ ðoX unÞ

2ÞdX 6
C
k

Z L

0

2u0u
2
n dX þ �: ð42Þ
This implies that kunk1 is uniformly bounded and therefore there is a subsequence, also denoted by {un} that
converges weakly to some u* in the H 1

per norm. By weak convergence, u* 2 V2. Note also that in H 1
per;0, weak

convergence implies uniform convergence [12]. As a consequence
Z L

0

u0u
2
n dX !

Z L

0

u0u
2
� dX ; ð43Þ
as n ?1. By using (42) and (43) we have u* 6¼ 0. We now show that Q(u*) = 0. By Fatou’s Lemma and the
weak convergence,
jju�jj0 6 lim inf jjunjj0:

On the other hand, if kfk0 = 1 [8],
hf ; oX u�i 6 lim infhf ; oX uni 6 lim inf jjoX unjj0:

Then
jjoX u�jj0 ¼ supjjf jj0¼1hf ; oX u�i 6 lim inf jjoX unjj0;
and with (43) we have
Qðu�Þ 6 lim inf QðunÞ ¼ 0;
which, along with the fact that a P 0, implies Q(u*) = 0.
Now, without loss of generality we can assume ku*k0 = 1 (in other case, the division of u* by its norm does

not affect to the arguments). We consider the functionals
J 1ðuÞ ¼ hu;ui; J 2ðuÞ ¼ hu; vi;
J 3ðuÞ ¼ hu;Ai; J 4ðuÞ ¼ hu; 1i:
The minimum of Q(u) in H 1
per with the constrains J1(u) = 1,J2(u) = J3(u) = J4(u) = 0, is attained in u*. Then

there exist constants am, m = 1(1)4, such that
dQðu�Þ ¼
X4

m¼1

amdJ mðu�Þ:
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By expanding the functionals, it can be seen that this implies
H 00ðu0Þu� ¼ b1u� þ b2vþ b3Aþ b41;
for some constants bm, m = 1(1)4. The inner products of H00(u0)u* with the functions 1, u*, oXu0, the use of
(36), Theorem 1 and the facts that u* 2 V2 and that Q(u*) = 0 imply that b1 = b3 = b4 = 0. Then
H00(u0)u* = b2v and therefore Lu� ¼ b2oX u0. Thus, u* is of the form
u� ¼ c1oX u0 þ c2
du0

dc
;

for some constants c1, c2. But, since u* 2 V2, necessarily c1 = c2. Hence u* = 0, which is a contradiction. h

As a consequence, we have:

Theorem 5. For any u 2 V2, c > 0, there are constants c1(c), c2(c) > 0 such that
c1ðcÞjjujj21 6 QðuÞ 6 c2ðcÞjjujj21:
Proof. From the explicit expression of Q(u), it is clear that there is c2(c) > 0 such that QðuÞ 6 c2ðcÞjjujj21 for
any u 2 V2. On the other hand, Theorem 4 proves that we can find c(c) > 0 such that if u 2 V2,
QðuÞP cðcÞjjujj20. Finally, as in [12], this implies the existence of c1(c) > 0 such that if u 2 V2,

QðuÞP cðcÞjjujj21. h

We now apply these results to the solutions of the linearized Eq. (40) with initial condition in V2. It is not
hard to see that V2 is invariant by L. Therefore, if EðT Þ is the solution of (40) with Eð0Þ 2 V 2, then EðT Þ 2 V 2

for all T P 0. As well, according to Theorem 5,
c1ðcÞjjEðT Þjj21 6 QðEðT ÞÞ ¼ QðEð0ÞÞ 6 c2ðcÞjjEð0Þjj21:

The conclusion is that solutions of (41) with initial condition in V2 are bounded in time in the norm of H 1

per.
We show the influence of this result in the resolution of (37) with j = 2, that is with r2 2 V2. A first conse-

quence, via Duhamel’s principle, is that E2ðT Þ grows, in the H 1
per norm, at most linearly with time. But in fact,

E2ðT Þ is bounded in time. To see this, note that, since r2 2 V2, we can define
s2ðX Þ ¼ S2ðX Þ �
hS2; 1i

L
1; S2ðX Þ ¼

Z X

0

r2ðyÞdy:
Then s2 2 H 1
per;0; oX s2 ¼ r2 and, due again to the fact that r2 2 V2, we have hs2, oXu0i = �hr2, u0i = 0. Hence,

s2 is in the range of H00(u0), so we can obtain g 2 H 1
per with H00(u0)g = s2 and therefore Lg ¼ r2. Furthermore, it

is not hard to see that g 2 H 1
per;0 (in fact, hg,1i = hg,u0i = 0). If we write
g ¼ c1oX u0 þ c2

du0

dc
þ g2;
with constants c1, c2 and g2 2 V2, then
r2 ¼ Lg ¼ c2

ok
oc

oX u0 þ Lg2 2 V 2:
Therefore c2 = 0 and g = c1oXu0 + g2. Finally we can write
E2ðT Þ ¼
Z T

0

eðT�sÞLr2 ds ¼ etLg � g;
where etLg ¼ c1oX u0 þ etLg2, with etLg2 2 V 2. This proves that E2ðT Þ is bounded in time in the H 1
per norm.

Gathering the results (38) and (39) and this last one, we have the following:

Theorem 6. The solution of (23) in H1
per can be written in the form
EðT Þ ¼ a1ToX u0 þ a2 T
du0

dc
� T 2

2
oX u0

� �
þ a3 T � T 2

2
oX u0

� �
þ E2ðT Þ ð44Þ
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where
a1 ¼ �hr;Ai; a2 ¼ hr; vi; a3 ¼ hr; 1i;

and there is a constant C(c) such that jjE2ðT Þjj1 6 CðcÞ for all T P 0.
3.2. Application to the numerical solution

The structure of EðT Þ in (44) can be applied to each error function er+j of the asymptotic expansion of the
global error (20). Reordering terms, we come to

Theorem 7. Under the assumptions (H1) and (H2) we can write
UnðxÞ ¼ uðx; tn;~c; ~l;~x0Þ þ DtreEðx; tnÞ þ Dt2r�1Cðx; tn;DtÞ;Dt! 0 ð45Þ

where

(i) The new parameters are
~x0 ¼ x0 þ tn

Xr�1

j¼0

ajDtrþj þ t2
n

2

Xr�1

j¼0

hrjðu0Þ; vi þ
hrjðu0Þ; 1i

L

� �
Dtrþj;

~l ¼ lþ tn

Xr�1

j¼0

hrjðu0Þ; 1iDtrþj

 !
;

~c ¼ cþ tn

Xr�1

j¼0

hrjðu0Þ; vi þ bjhrjðu0Þ; 1i
	 


Dtrþj;

ð46Þ

for some constants aj, bj,j = 0, . . . , r � 1.

(ii) The function eE accumulates the terms Er+j,2(t) 2 V2 of the error functions, in such a way that
eE ¼Xr�1

j¼0

DtjErþj;2:

Consequently, eE is bounded in time in the H 1
per norm.
(iii) The function C is a remainder that, for fixed t,
jjCð�; t;DtÞjj1 ! 0; Dt! 0:
One of the points of (45) is the identification of some sources of growth with time of the error, specially
those related to the parameters, that may have influence on the simulation. Formulas in (46) reflect the fact
that the behaviour of the parameters through the simulation depends on the quantities hrj(u0),1i,h rj(u0),u0i,
j = 0, . . . , r � 1, that is
hrjðu0Þ; dH 0ðu0Þi; hrjðu0Þ; dH 1ðu0Þi; j ¼ 0; . . . ; r � 1: ð47Þ

It can be shown [22] that if the numerical method preserves the quantities H0 and H1 up to order 2r, that is, if
H 0ðU nÞ � H 0ðU 0Þ ¼ OðDt2rÞ; H 1ðU nÞ � H 1ðU 0Þ ¼ OðDt2rÞ;

then the coefficients (47) vanish. In particular, this holds if the semi-discrete method preserves exactly those
invariants.

We focus on the last two formulas of (46). The first one says that the mean value of the numerical solution
deviates linearly in time from that of the theoretical solution, unless H0 is an invariant of the scheme at least
up to order 2r. In the same way, the preservation of the numerical solution on the level set {H1 = c} depends,
at least at the degree of approximation given by formula (45), on the vanishing of (47); this can be obtained if
the numerical integration preserves both quantities up to order 2r. This modification of the original values l
and c has some consequences in the simulation of the more physical parameters of the cnoidal wave. This is
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treated in the following subsection. For instance, we can already say that the quadratic growth with time of the
error in the parameter of the initial phase, first formula in (46), turns into a linear growth under the preser-
vation conditions described above over the numerical integration.

3.3. Numerical experiments

Two purposes have this subsection. The first one is to illustrate the previous results, concerning the different
error behaviour as a function of the preservation, up to certain order, of invariants of the equation; in this case
those given by (4)–(6). The second one is to show the influence of these conservation properties of the time
integrators on the simulation of some other relevant parameters of the wave, specially those with some phys-
ical meaning.

The description of the experiment is as follows: we consider a cnoidal wave solution of the family (14), with
parameters b1 = 0.1, b2 = 0.15, b3 = 0.2. This will be approximated by three time integrators of low order: the
first one preserves the quantity H0 but not H1; the second one is designed to preserve H1 but, on the contrary,
it does not conserve H0. Finally, the third one preserves both quantities. We avoid higher order of convergence
because we think the experiments seem to be sufficiently illustrative and too much computational cost does not
seem necessary.

For the space discretization of (1) and (2) we will consider a Fourier pseudospectral method. Due to the
accuracy of the discretization, errors committed in space are negligible compared to the error due to the time
integration. Then, time integration is developed in Fourier space. The three time integrators selected are the
following: from the family of SDIRK methods
we consider

� The method of order three, denoted by [M1], corresponding to the value m ¼ ð3þ
ffiffiffi
3
p
Þ=6. It is an example of

a method with preservation of H0 [24] but not of H1.
� A modification of the previous method, consisting of forcing the numerical solution to preserve H1 by using

projection techniques [27]. The resulting method, denoted by [M2], looses the preservation of H0.
� The third method [M3] is designed to, from [M1], preserve the quantities (4) and (5). Here projection tech-

niques are also used, but the projection is made involving both quantities.

Figs. 1–3 display, in a log–log scale, the discrete L2 norm of the global error as a function of time for the
methods [M1], [M2], [M3], respectively. The stepsizes are Dt = 0.1,0.05,0.025 and the final time t = 104. The
three figures illustrate Theorem 7, concerning the influence of the invariant quantities on the growth with
time of the error. The behaviour in the cases [M1] and [M2] is similar: the slope of the lines shows that
the global error, in both cases, grows quadratically with time, although for [M2] this is observed from
longer times (t � 2000 against t � 600 in the case of [M1]). This source of error growth may come from
the behaviour of the parameter of the phase, as Theorem 7 suggests. However, following this theorem,
the scheme [M3] generates a numerical solution that simulates the parameters l and c in a better way, while
the error in the phase only grows linearly with time. This linear growth is observed in the global error
behaviour, as Fig. 3 shows. Note that, due to the relative equilibrium condition (15), a time behaviour
of the error similar to that of [M3] can be obtained with a method preserving two of the first three invar-
iants of the problem.

As far as the simulation of the parameters of the wave involved is concerned, the methods exhibit different
behaviour, as Theorem 7 suggests. We have already analyzed the phase parameter and now we focus on the
following parameters: the speed, the maximum, the minimum and the amplitude of the wave. Figs. 4–6 show,
again in a log–log scale, the error in time in the velocity of the wave for the methods [M1], [M2] and [M3],
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Fig. 1. Error vs time in log–log scale [M1]. The time steps are Dt = 1/10,1/20/1/40.
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respectively (Fig. 7 only contains the result in Fig. 6 corresponding to Dt = 1/10). The speed is measured in a
standard way [6,7,19,21,15]. The steps sizes are Dt = 0.1, 0.05,0.025. We observe a linear growth of the error
for the ‘nonconservative’ methods [M1] and [M2], while for the third method, the error does not grow with
time and it seems to provide a better simulation.

Some differences are also observed in the simulation of the minimum (b2) and the maximum (b3) of the
wave. These are shown in Fig. 8 and 9, respectively. Fig. 8 displays the error in the maximum for the three
methods against time; again [M1] with solid line, [M2] with dotted line and [M3] with dashed line. The max-
imum value seems to be better simulated in the case of [M3], at least during this time of integration. This
method generates a numerical solution with a maximum that does not exhibit a linear time growth with
respect to the real maximum, as in the case of the other two methods. Similar comments can be made
for the case of the simulation of the minimum, shown in Fig. 9. The computation of these two parameters
has also been carried out in an standard way, by using the pseudospectral discretization in space ([15] and
references therein). The final parameter, the amplitude, is defined as the difference between the maximum
and the minimum of the cnoidal wave. In our experiments, it has been measured in the same way and
the results are shown in Fig. 10. Again, the advantages of the use of [M3] to simulate this parameter are
also observed.
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Fig. 8. Error in the maximum vs time in log–log scale. Solid line [M1], dotted line [M2] and dashed line [M3]. The time step is Dt = 1/10.
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Fig. 10. Error in the amplitude vs time in log–log scale. Solid line [M1], dotted line [M2] and dashed line [M3]. The time step is Dt = 1/10.
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4. Case of N-phase solutions, N > 1

Here we study the influence of the invariants of (1) and (2) in the simulation of general N-band solutions,
with N > 1. An intuitive idea may be given by the decomposition of the solution (12) in the form [50]
uN ðx; tÞ ¼ ucnð~gÞ þ uintð~gÞ; ð48Þ

where ~g ¼ ðg1; . . . ; gN Þ, gj given by (13). In (48), ucn represents a superposition of cnoidal waves
ucnð~gÞ ¼
XN

n¼1

wnðgnÞ; ð49Þ
with wn a cnoidal wave of the form considered in the previous section and determined by gn. The second term
uint in (48) represents the part of the solution corresponding to nonlinear interactions between the cnoidal
components. In general, this cannot be considered small, in contrast to the case of N solitons [29]. However,
the decomposition (48) and Section 3 suggest that the approximation to the solution uN should be affected
somehow by the conservative or nonconservative character of the time integrator considered; character not
only with respect to the first three invariants, but also with respect to the first N + 1 invariants. The analysis
of this influence can be made by using similar arguments to those of the case of one-band solutions, treated
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above. However, in the general case, the study of the linearized equation around an N-band solution must
follow a different way, since now we cannot simplify the equations with a reference moving with the solution,
as before. A first way of dealing with the problem could be looking for a decomposition of each error function
of (20) with u = uN,
eðx; tÞ ¼
XN

n¼1

enðgnÞ þ eintð~gÞ; ð50Þ
similar to (48) for the solution. Since, for each error function, the source term r(uN(x,t)) of the nonhomogene-
ous linearized KdV equation around uN, Eq. (21) with u = uN, depends on uN and spatial derivatives, then it
can also be written in a similar way
r ¼
XN

n¼1

rðwnÞ þ rintð~gÞ; ð51Þ
where r(wn) is the source term of the corresponding linearized KdV equation around u = wn. Incorporating
(50) and (51) into (21), we have (see [29])

(i) Each term en satisfies the nonhomogeneous linearized KdV equation around the simple cnoidal wave wn

with source term r(wn).
(ii) The term eint is a solution of the nonhomogeneous linearized KdV equation around u = uN, with a

source term involving uint, wn, en, n = 1, . . . ,N and rint.

This way of analysis may serve to see more directly the influence of the previous study for cnoidal waves in a
general N-phase solution simulation. However, it does not allow to provide a role to all the first N + 1 invar-
iants in the simulation. In this case, treating the nonhomogeneous Eq. (21) around u = uN directly may be
more appropriate. In order to describe the solutions of this equation, we will make use of a basis of squared
eigenfunctions of the corresponding eigenvalue problem of the Hill’s operator associated to the solution of the
KdV equation, mentioned in Section 2.

4.1. Linearized equations

As in the previous Section, in order to study the propagation of the error when approximating the N-phase
solution uN, we need to describe the solutions of nonhomogeneous linearized KdV equations around uN,
@te ¼ JH 002ðuNðx; tÞÞeþ rðuNðx; tÞÞ;
eðx; 0Þ ¼ 0

ð52Þ
satisfied by the error functions in (20). We first consider the associated homogeneous equation
@te ¼ JH 002ðuN ðx; tÞÞe ¼ �exxx � 2ðuN eÞx: ð53Þ

The following result finds a set of solutions of (53) which forms a basis of H 1

per for each t. Its construction is
made as a biorthogonal basis of a set of solutions of the adjoint linearized KdV equation around uN,
vt � vxxx � 2uN vx ¼ 0: ð54Þ

The basis with solutions of (54) consists of squared eigenfunctions of the main spectrum of (8). This result is
given in [35] (see also [17,20,42,36,43]. We note that, in this case, uN can be characterized by the parameters
E2k; ck ¼ c0

k ; k ¼ 1; . . . ;N , described in Section 2. This is a different point of view from that of Section 3 for the
case N = 1.

Theorem 8 [35]. There is a set fumðx; tÞgm2Z of solutions of (53) with
umk
¼ ouN

oE2k
; u�mk

¼ ouN

ock
;
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(for k = 1, . . . ,N and where the derivatives are evaluated at the corresponding values E2k, ck of uN) that for

each t forms a basis of H 1
per. There is also a set f/mðx; tÞgm2Z of solutions of (54), with /m written in terms of

squared eigenfunctions of the main spectrum of (8), that for each t forms a basis of H 1
per. The function /mk

can

be expressed in terms of squared eigenfunctions associated exclusively to E2k, k = 1, . . . ,N and /0 = 1. Fur-
thermore, the bases fumðx; tÞgm2Z and f/mðx; tÞgm2Z are biorthogonal with respect to the usual L2[0,T] inner

product.

Note that if, for fixed t, wð�; tÞ 2 H 1
per, we can write
w ¼
X
m2Z

wmðtÞum; wmðtÞ ¼
hw;/mi
jj/mjj

2
0

:

In particular, for k = 1, . . . ,N,
wmk
ðtÞ ¼

hw;/mk
i

jj/mk
jj20

:

Since /mk
can be written only in terms of the squared eigenfunctions associated to E2k, then [42,34], each of

the variational derivatives dHj(uN),j = 0, . . . ,N can be expressed as a combination of the /mk
in such a way

that
hw;/0i ¼ hw;/mk
i ¼ 0; k ¼ 1; . . . ;N ;
if and only if
hw; dH jðuNÞi ¼ 0; j ¼ 0; . . . ;N :
In particular, in the case m = 0, we have
w0ðtÞ ¼
hw; 1i

L
¼ hw; dH 0ðuN Þi

L
:

This may have a consequence in the behaviour of numerical approximations to uN. By using Duhamel’s prin-
ciple, the solution of (52) can be written as
eðx; tÞ ¼
Z t

0

T ðt; sÞrðuN ðx; sÞÞds: ð55Þ
In (55), (t,s) ´ T(t, s) is the operator of propagation for the linearized KdV (53); this means that T(t, s)f(�, s) is
the solution at t of (53) with initial condition f(�, s) at t = s. By using the previous results, the operator T can be
decomposed into the form
T ðt; sÞ ¼ T 1ðt; sÞ þ T 2ðt; sÞ

with
T 1ðt; sÞwðx; sÞ ¼ D0ðsÞu0ðx; tÞ þ
XN

k¼1

DkðsÞumk
ðx; tÞ þ LkðsÞu�mk

ðx; tÞ;

D0ðsÞ ¼
hw;/0i

L
;DkðsÞ ¼

hw;/mk
i

jj/mk
jj20

; k ¼ 1; . . . ;N ;

LkðsÞ ¼
hw;/�mk

i
jj/�mk

jj20
; k ¼ 1; . . . ;N ;

T 1ðt; sÞwðx; sÞ ¼
X

m2Z;m6¼�mk

hw;/mi
jj/mjj

2
0

umðx; tÞ:
Then the solution e in (55) can be written as
eðx; tÞ ¼ e½1	ðx; tÞ þ e½2	ðx; tÞ
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with
e½1	ðx; tÞ ¼
Z t

0

D0ðsÞds
� �

u0ðx; tÞ þ
XN

k¼1

Z t

0

DkðsÞds
� �

umk
ðx; tÞ þ

Z t

0

LkðsÞds
� �

u�mk
ðx; tÞ; ð56Þ

DkðsÞ ¼
hrðuN ð�; sÞÞ;/mk

i
jj/mk

jj20
; k ¼ 1; . . . ;N ;D0ðsÞ ¼

hrðuN ð�; sÞÞ;/0i
L

; ð57Þ

LkðsÞ ¼
hrðuNð�; sÞÞ;/�mk

i
jj/�mk

jj20
; k ¼ 1; . . . ;N : ð58Þ

e½2	ðx; tÞ ¼
Z t

0

T 2ðt; sÞrðuN ðx; sÞÞds: ð59Þ
The application of (56)–(59) to each error function of the global error expansion (20) with respect to uN allows
to obtain an asymptotic expression for the numerical solution of the form
UnðxÞ ¼ uN ðx; tn; ~E2k;~ck; ~lÞ þ DtrF ðx; tnÞ þ D2r�1Zðx; tn;DtÞ: ð60Þ

This is the version of formula (45) for the N-phase solution uN. It deserves some comments.

(i) The numerical solution incorporates a modified N-phase wave with new parameters
eE2k ¼ E2k þ
Xr�1

j¼0

Dtrþj

Z t

0

D½rþj	
k ðsÞds

� �
; k ¼ 1; . . . ;N ;

~ck ¼ ck þ
Xr�1

j¼0

Dtrþj

Z t

0

L½rþj	
k ðsÞds

� �
; k ¼ 1; . . . ;N ;

where D½rþj	
k ; k ¼ 1; . . . ;N ; L½rþj	

k ; k ¼ 1; . . . ;N are of the form (57) and (58) with r = rj as a source term,
see (21), indicated by the superscript. Note that the behaviour in time of the integralsZ t

0

D½rþj	
k ðsÞds;

Z t

0

L½rþj	
k ðsÞds;

depends on the time behaviour of the functions /�mk
. Some previous comments show that if the method

satisfies the conditions

hrjðuN ðx; tÞÞ; dHkðuN ðx; tÞÞi ¼ 0; t P 0; k ¼ 0; . . . ;N ; j ¼ 0; . . . ; r � 1;

then Dk = 0,k = 1, . . . ,N and the numerical solution provides a better simulation of the parameters E2k,
k = 1, . . . ,N. In particular, this holds if the method preserves, at least up to certain order, the first N + 1
invariants of (1) and (2).
(ii) The second term F(x,t) includes the parts e½2	rþjðx; tÞ of the error functions. Again, its behaviour in time
depends on the behaviour of the functions /m(x,t),m 6¼ mk.

(iii) The third term is a remainder that, for fixed t, goes to zero as Dt ? 0, with a not uniform time behaviour.

The better simulation of the parameters E2k provided by the method with conservation properties can be pos-
itively felt in the simulation of the parameters in (12), due to their dependence on the E2k. Note that, if we
consider the decomposition (48) of the solution uN, the numerical behaviour suggested by (60) affects to both
terms, since the new parameters eE2k;~ck must appear in both the cnoidal components (49) and the interaction
part. The good properties of the method with respect to the invariant quantities of the problem result in a
better simulation of the physical parameters of the wave, including the mean value, wherever they act, in
the cnoidal part or in the interactions.
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